TGSTK  0.0.1
The Tumour Growth Simulation ToolKit
Bibliography
[1]

Cgal 5.2.1 – 3d mesh generation. https://doc.cgal.org/latest/Mesh_3/index.html#Chapter_3D_Mesh_Generation. Accessed: 19 Apr 2021.

[2]

C. Hogea, C. Davatzikos, and G. Biros. An image-driven parameter estimation problem for a reaction–diffusion glioma growth model with mass effects. Journal of Mathematical Biology, 3(56):793–825, Jun 2008.

[3]

S. Jbabdi, E. Mandonnet, H. Duffau, L. Capelle, K. R. Swanson, M. Pélégrini-Issac, R. Guillevin, and H. Benali. Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magnetic Resonance in Medicine, 54(3):616–624, Sep 2005.

[4]

E. Konukoglu, M. Sermesant, O. Clatz, J.-M. Peyrat, H. Delingette, and N. Ayache. A recursive anisotropic fast marching approach to reaction diffusion equation: Application to tumor growth modeling. In Information Processing in Medical Imaging, pages 687–699. Springer, 2007.

[5]

P. Mosayebi, Da. Cobzas, M. Jagersand, and A. Murtha. Stability effects of finite difference methods on mathematical tumor growth model. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops (CVPRW), pages 125–132, Jul 2010.

[6]

R. Rockne, J. K. Rockhill, M. Mrugala, A. M. Spence, I. Kalet, K. Hendrickson, A. Lai, T. Cloughesy, E. C. Alvord, and K. R. Swanson. Predicting efficacy of radiotherapy in individual glioblastoma patients in vivo: A mathematical modeling approach. Physics in Medicine and Biology, 55(12):3271–3285, Jun 2010.

[7]

K. R. Swanson, R. C. Rostomily, and E. C. Alvord. A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: A proof of principle. British Journal of Cancer, 98(1):113–119, Jan 2008.

[8]

J. Unkelbach, B. H. Menze, E. Konukoglu, F. Dittmann, M. Le, N. Ayache, and H. A. Shih. Radiotherapy planning for glioblastoma based on a tumor growth model: Improving target volume delineation. Physics in Medicine and Biology, 59(3):747–770, Feb 2014.